Recomendaciones


(01) 'Sobre las proposiciones formalmente indecidibles de los Principia Mathematica y sistemas afines', de Kurt F. Gödel

(02) La creatividad surge de razonar diferente y hallar absurdos, de repensar éstos y brindarles coherencia.

(03) Hackear es experimentar con las limitaciones de la sabiduría convencional, y aprender algo más en su lugar.

domingo, 16 de noviembre de 2014

EL TEOREMA DE CANTOR Y LA INDECIDIBILIDAD DE LA HIPÓTESIS DEL CONTINUO

 Georg Cantor, el creador de la
primera Teoría de conjuntos.


El texto puede leerse desde este vínculo en formato pdf: El Teorema de Cantor y la indecidibilidad de la Hipótesis del continuo.

 ·

Cabe mencionarse que la demostración presentada sólo es válida para los números naturales (o bien, los racionales en lugar de los naturales) y los números reales, y no para los "conjuntos potencia" que pudieran obtenerse de los números reales. Esto es porque la demostración ha sido analítica, prescindiendo, en parte, de la axiomática de la teoría de conjuntos ZFS.

16 de Noviembre de 2014
 
 

No hay comentarios:

Publicar un comentario